If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+100x+400=0
a = 3; b = 100; c = +400;
Δ = b2-4ac
Δ = 1002-4·3·400
Δ = 5200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5200}=\sqrt{400*13}=\sqrt{400}*\sqrt{13}=20\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-20\sqrt{13}}{2*3}=\frac{-100-20\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+20\sqrt{13}}{2*3}=\frac{-100+20\sqrt{13}}{6} $
| (4x)+27+53=180 | | 0=-600x+(-600) | | −160=22+24p−32 | | 46.2=4.2x | | 4+9(1-7d)=23 | | -6+10c=-10c-2+6c | | 44=3w-10 | | 0=-600x | | −6(2r−2)=−8r+40 | | -3j+17j−5=9 | | 8^(x+3)=16(2x+1) | | 45w-9=26 | | -11/2=v/2 | | 2+7(p+2)=-6(-3p+1) | | (x+2)+x=26 | | 0=3c^2-15c | | 7b=4(b+30)=b | | 9/5=23/x | | -0.25x+4.5=x | | 2(3x-7)=14+3x+2 | | 27=3(3n-3)-3(2n-5) | | (12+3x)6-6x=24 | | -12=12y+36 | | 2x+5=-2 | | 4x-3+2x+4=7 | | 15x-(-5)+0=20 | | -2x-10=-14x7 | | 3x+12(6x+8)=8x−2 | | 8-2(t+1=-3t+1 | | 3x+4.1=13.6 | | 7-3x+9=x | | 2(x-4)=1-(x+3) |